Building simple formations in large societies of tiny mobile robots

Vision: Mathematical foundations of swarm robotics

- Tiny robot
 - Small
 - Limited sensing
 - Limited computational power
 - Limited communication capabilities
 - Limited energy
- Large society of tiny robots
 - Accomplish difficult tasks
 - Adapt to changing environment
 - Are robust against failures
 - Adapt to different tasks

How do we achieve good global behaviour? → Which formations can the robots build?

Challenge: Design and rigorous mathematical analysis of local strategies for robotic swarm formation

- Correctness
- Time efficiency
- Energy efficiency

Example: Line between two stations

- Start
 - Robots already organized in a chain
 → each robot knows two neighbours
 - Chain is arbitrarily long and winding
- Goal
 - Each robot is between two neighbours
 - The robots form a straight line between the two stations

→ Spend as little energy as possible!
 - Sense environment
 - Movement

A Strategy: δ-Go-To-The-Middle

- Model assumptions
 - Discrete time
 - Synchronous execution of the strategy
 - n robots

- Results
 - Energy spent for sensing environment: proportional to $n^2 \log n + \frac{n}{\delta}$
 - Energy spent for moving: proportional to $\delta n^2 + n$

→ Choose $\delta = \frac{1}{n}$:
 - Energy for sensing proportional to $n^2 \log n$
 - Energy for moving proportional to n

Conclusion: Exploring the step size can be helpful for energy reduction

Bastian Degener, Barbara Kempkes, Friedhelm Meyer auf der Heide
Heinz Nixdorf Institute & Department of Computer Science, University of Paderborn

Funded by the European Commission under the FET Proactive Initiative Pervasive Adaptation.