Impact of Real-time Visual Attention on Computer Vision Products and Cognitive Robotics

Tadmeri Narayan Vikram1,2, Marko Tscherepanow2 and Britta Wrede1,2
1CoR-Lab and 2Applied Informatics Group, Faculty of Technology Bielefeld University, Germany.

Introduction

- Attention helps us focus on the most relevant sensory input while suppressing the others.
- Visual attention directs the focus to the most significant part of the scene.

Fig 1. Illustration of the Focus of Attention on a Cricket Scene by the model proposed in [1]

Several computational models of visual attention have been proposed [2, 3], and here are its practical applications.

Applications yet to be commercialized

Fig 4. Original image (a), image enlargement without visual attention component (b), Enlargement with Visual Attention (c) [3].

Obstacle avoidance for mobile robots, as prominent obstacles can be detected by a visual attention model [4]

Visual attention models can also be used to control eye-gaze for humanoid robots

Applications to Learning and Interaction

Fig 5. Original Image (a), Detected Focus of Attention highlighted by a white square (b).

This helps in focusing the robot's attention to meaningful regions of the scene during a conversation.

Real world applications of Visual Attention are still in a nascent stage, and a lot of potential for commercialization exists.

References

Acknowledgements

Tadmeri Narayan Vikram gratefully acknowledges the financial support from the EU FP7 Marie Curie ITN RobotDoc. Contract No. 235065.

Email : {nvikram,marko,bwrede}@techfak.uni-bielefeld.de