Quilt: Interactive Publications

M. Bubak^{1,2}, E. Ciepiela³, T. Gubała³, P. Nowakowski³,

- ¹ Institute of Computer Science AGH, Kraków, Poland
- ² Informatics Institute, University of Amsterdam, The Netherlands
- 3 ACC CYFRONET AGH, Kraków, Poland

Quest for innovative technologies:

•facilitate collaborative development and publication of scientific experiments with the use of distributed computing resources; •retroactively process existing publications to render them interactive, with the ability to "inject" dynamic executable content; •instantiate scientific papers with dynamic content in a reader-friendly way, with

by end users;
•directly interface scientific databases and libraries of research data (e.g. OpenAIRE);
•enhance the peer review process by enabling reviewers to validate results of computational research by reenacting experiments using arbitrary input data.

interactive input which can be manipulated

The Quilt Experimentation Cycle Pre-computed results **Algorithms** Performs computations **Develops** Quilt Server + experiment Computing Backend Runs experiment Author **Browses** with own data algorithms, User input results forms Reads paper Writes **Ouilt** publication` Publisher paper Server Static content Reads static content Reader

- A research paper is authored by the **Author** in the form of a HTML document, capable of being rendered by a browser;
- Where applicable, the author may insert dynamic content into the publication (as simple HTTP links to so-called Quilt assets (input forms, output images, pieces of executable code), produced using the Experiment Workbench (via explorative experimentation);
- Assets can be interacted with by the Reader, who can, in effect, rerun the experiment with custom input, browse/download primary datasets as well as read the static content of the publication;
- The Quilt Server reenacts the experiments according to the algorithms specified by the Author;
- The Quilt Server can delegate computing tasks to the **Computing Backend** (HPC resources).

Experimentation

- Used by the **Author** to write, test and deploy scientific experiments
- Supports a number of programming languages and can access HPC infrastructures
- Supports collaboration within goaloriented research teams
- Web interface based on GridSpace
- Interfaces Cloud computing stacks

Authoring

Quilt End-User Interfaces

- Used by the Author to prepare the interactive publication
- Extended with the ability to publish and manage interactive assets generated by the experimentation UI
- · Requires no programming knowledge
- Based on Wiki/blogging tools
- Integration with arbitrary content management systems (CMS)

Reading

existing to be developed

- Used by the **Reader** to interact with the publication
- Can visualize the publication and provides access to interactive content
- Can schedule computations on resources contributed by the reader
- · Providing fine-grained security
- Preserving partial results of long-term computations
- 1. M. Baez, et al.: Addressing information overload in the Scientific Community; IEEE Internet Computing 14 (6) 31-38, 2010
- 2. M. Bubak et al., Virtual Laboratory for Collaborative Applications, In: M. Cannataro (Ed.) Handbook of Research on Computational Grid Technologies for Life Sciences, Biomedicine and Healthcare, Chapter 27, pp. 531-551, 2009, IGI Global

